
Game Dev Tech Triggers

1 of 4

First exposure to triggers and scripted actions.

Introduction
Triggers are some of the most useful features of UnrealEd. You’ll need to use them for opening doors,

calling lifts, starting videos, controlling AI Behaviour and lots more besides.

Event Basics
Unreal is EVENT based. You’ve seen this set up before – think back to your Gamemaker days (the joys of

a drag and drop interface). You associated Events with Actions. I’m sure you can remember:

 an Event might be the user pressing the space bar and the associated action is to create a new

bullet object and have it fly across the screen.

 another event would be the collision of this bullet with an enemy and the associated action is to

remove the enemy from the screen and increase your score.

The more common name for these two stages are Event and Event Handler (what actions are performed

when the event is triggered)

This short tutorial shows you an example of using this process within Unreal. It’s not as quite as

straight-forward in UT as in was in GameMaker, but it is very

powerful and actually quite flexible once you get the hang of it.

You’ll be able to implement a lot of your game using these in-

engine scripts. For more advanced sections of our game we’ll

definitely have to get our hands dirty in the UnrealScript code.

Personally, I find that it’s often easier to do most things at the

UnrealScript level, but I’ll leave you to make your own mind up on

that It’s a similar to GameMaker – create using the drag and

drop interface, or use the scripting language GML.

Setting up the Change Level Trigger
This example will use the Event model to allow our player to

change between levels. The player will not automatically move to

the new level on collision with an exit, but will be given the choice

as to whether they want to teleport to the next arena or stay in

the current one.

When the player collides with the exit, a message will be displayed

on the screen:

“Press USE to teleport to the Atrium”

Game Dev Tech Triggers

2 of 4

If at this point the player presses their USE button (defaults to E key) they will be teleported to the new

arena.

In order to achieve this we need both a UseTrigger (the

event trigger) and a ScriptedTrigger (the event

handler).

Setting up the Event Trigger

Begin by placing a UseTrigger down in your level. It can

be found in the Actor Browser at

ActorTriggersUseTrigger.

The location of the UseTrigger in the level is the position

where a player will be given the option to teleport. In my

level I’ve placed it by a doorway that the player will teleport

through.

Next, bring up the properties for this UseTrigger

(double-click on the UseTrigger in the 3D view). The

property window allows us to alter all the viewable

properties. When we start writing UnrealScript you’ll be

given the option to ‘expose’ properties within the UnrealEd.

You’ll see a number of different property categories.

In order to change the text displayed to the user we

need to alter the text in UseTriggerMessage.

Do this now and change it to read something

appropriate.

At this point we need to agree on a naming convention.

We need to give this event a name so that we can refer

to it in the Event Handler.

I’m going to call my event:

eventChangeLevelAtrium

Add this to the properties under EventsEvent.

Okay, that’s out Event Trigger all set up – now we need

to set up the Event Handler.

Game Dev Tech Triggers

3 of 4

Setting up the Event Handler

Again, this isn’t too difficult to get working. We’ll need to use two

commands, one that tells the script to wait for our event and the

second that actually does the teleport.

Start by placing down the ScriptedTrigger in the level. This can

be found KeypointAIScriptScriptedTrigger. It

actually doesn’t matter where in the level it goes but it makes sense

to stick it down somewhere near our UseTrigger.

The ScriptedTrigger (and other child classes of AIScript)

contain the AIScript category in its property list. This is essential

for adding our own scripts. If you’ve got the Mastering Unreal book

handy – flick to page 505 onwards to read the full list of Actions we

can include in our script.

Just to remind you – using the AIScript interface isn’t really related to UnrealScript – it’s just a simple

way of performing a few built-in actions. It’s still pretty useful but be prepared for a lot more coding.

The actions that we’ll be using for our Event Handler are:

 Action_WAITFOREVENT – this sets-up the synchronous wait.

 Action_CHANGELEVEL – actually changes the level

I find the interface a bit cumbersome – but I’ll leave you to explore this yourself. Add those two actions

and set up the properties that go with them. For example, the ExternalEvent property in the

Action_WAITFOREVENT should be set to your event name.

Testing

It’s a fairly simple script, so hopefully you can start up your level and it will work first time.

Game Dev Tech Triggers

4 of 4

Note – You don’t need to rebuild your level if you’re just changing scripts or properties in UnrealEd. You

only need to rebuild your level if you’re altering lights / geometry / textures etc.

If things aren’t working, we have two options to try:

 Use the console command CAUSEEVENT.

CAUSEEVENT <eventname> allows us to trigger off an event without using the

UseTrigger. This will help us to decide if only one part of the Event and Event

Handler are working.

 Look in the logs for any error messages:

C:\Program Files\UT2004\System\UT2004.log

If you can’t spot any problems with either of these then you’ll need to get some help off a tutor or go

through the steps again.

What Next?

Now it’s time to start exploring what else you can use the UnrealED scripts for. If you get a good

understanding of this early you might find you don’t need to write as much UnrealScript for your final

game.

ScriptedTrigger

UseTrigger

PlayerStart

